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Small-Angle Neutron Scattering (SANS and VSANS): As described in [1], SANS 

and VSANS experiments were carried out at the KWS1 and KWS 3 diffractometers 

operated by by Jülich Center for Neutron Research (JCNS) at the Forschungs-

Neutronenquelle Heinz Maier-Leibnitz (FRM II) Garching, Germany [2]. Three 

configurations were used at KWS 1, namely the sample-to-detector (SD) distances of 

2, 8 and 20 m and the corresponding collimation lengths of 8 and 20 m. The 

wavelength was 0.7 nm (/ = 10%). These settings allowed covering a Q-range 

from 0.02 to 3.5 nm−1. The scattering vector Q is defined as  
4

sin θ/2Q



 with the 

scattering angle θ and the wavelength λ. A two-dimensional local sensitive detector 

detected the neutrons scattered by the sample solutions. The samples were fixed in a 

sandwich quartz cell with a path-length of about 1 mm. Plexiglas was used as 

secondary standard to calibrate the scattering intensity in absolute units. The data 

correction and calibration were performed using the software described in [3]. Some 

of the SANS data were measured at SANS II at Paul Scherrer Institute (PSI) in 

Villigen, Switzerland. The sample-to-detector distances were 1 and 5 m, the 

corresponding collimation lengths 4 and 5 m, and the wavelength 0.52 nm. These 

settings allowed us to cover a Q-range from 0.1 to 3.5 nm−1. 

In order to become sensitive to larger length scales of the order of micrometers, i.e., 

the network structure of the solutions, we extended our research at the very-small-

angle neutron scattering (VSANS) diffractometer KWS3. This instrument uses a 

parabolic mirror as a focusing optical element and covers a Q-range from 0.001 to 

0.02 nm−1. 
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Figure S1: (a) the nacre tablet structure and (b) SANS scattering geometry on the 

nacre and nacre organic matrix.  

 

Small-angle X-ray scattering (SAXS:) SAXS experiments were carried out similarly 

as described in [1] at a HECUS S3-Micro small-angle X-ray scattering instrument. 

The instrument uses Cu Kα radiation (0.154 nm) produced in a sealed tube. Samples 

were placed in Hilgenberg quartz capillaries with an outside diameter of 1 mm and 

wall thickness of 0.01 mm. The scattered intensity was corrected with the 

transmission of the samples calculated considering the absorption of the sample and 

that of the capillary. The scattered X-rays are detected with a two-dimensional 

multiwire area detector and afterwards converted to one-dimensional scattering by 

radial averaging and represented as a function of momentum transfer vector Q 

similar to the SANS experiments. 
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The Beaucage expression 

The Beaucage expression is given according to 

  
α

3
2

α

dΣ dΣ
(Q)= (0) exp(-u /3) + P erf u/ 6 /Q

dΩ dΩ

 
  

  (S1) 

representing a combination of Guinier’s and Porod’s laws describing the scattering at 

low and large Q, respectively. More quantitatively both approximations are valid for 

the parameter u = RgQ smaller or larger than 1, with u representing the product of 

radius of gyration Rg and scattering vector Q (defined below). Guinier's law has the 

shape of a Gaussian function whereas for Q larger than 1/Rg (u > 1) a power law 

according to α

α)(/  QPQdd is often observed, which in case of  = 4 represents 

the famous Porod law of compact particles with a sharp surface [4].  

 

The correlation model:  
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In the above equation, the first term describes Porod scattering from clusters 

(exponent = n) and the second term is a Lorentzian function describing scattering 

from polymer chains (exponent = m). This second term characterizes the 

polymer/solvent interactions and therefore the thermodynamics. The parameter (ξ) is 

a correlation length for the polymer chains. This correlation length represents a 

weighted-average inter distance between the hydrogen/deuterium-containing groups. 

The multiplicative factors of the Porod and Lorentzian terms (A and C, respectively), 

the Q independent incoherent background scattering (BKG), and the lower-Q and 

higher-Q scattering exponents (n and m, respectively) were obtained by a nonlinear, 

least squares fit of the data.  
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Gelatin  

Gelatin is derived from partial hydrolysis of native collagen and can be considered as 

a polydisperse copolymer with a broad molar mass distribution. At temperatures 

above the gelation temperature (Tgel) gelatin and below the overlap concentration of 

about 0.5 wt % (in H2O) native collagen forms a homogeneous solution in water. This 

is seen from the SAXS data in Figure S2. It is seen that the biopolymer of 0.3 wt % 

concentration has a correlation length of ξ = 15.9 ± 0.5 nm and shows the 

characteristics of swollen Gaussian chains in a good solvent. The latter 

characterization follows from the α = 1.6 power law exponent which corresponds to 

the Flory exponent  = 3/5 (  1/) [5]. The correlation length of ξ is smaller than the 

typical mineral bridge size of the nacre insoluble matrix (ca. 70 nm) and indicates that 

the gelatin molecular diffusion into the organic matrix of demineralized nacre through 

the holes of former mineral bridges is possible.  

Below Tgel and above the overlap concentration of ca. 0.5 wt % (in H2O) gelatin 

transforms to a thermoreversible physical gel, which is crosslinked by the association 

of helical domains. Most of the chains form a three-dimensional interconnected 

network transforming the random coil as observed in Figure S2 to a triple-helical 

structure. According to our previous SANS studies [1] the gel structure depends on 

the concentration. The choice of appropriate gelatin concentration will achieve both 

high efficiency for ion transport for optimal iron mineralization and high mechanical 

strength.  
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Figure S2: SAXS macroscopic cross-section dΣ/dΩ versus scattering vector Q for 

gelatin in H2O with acetate buffer (T = 20 °C, pH 5.3). The solid line represents a fit of 

correlation model [6]. The exponent  = 0.63 corresponds to the “Flory” exponent of a 

swollen linear chain in three dimensions according to  = 3/5 [5]. 

 

Light microscopy studies 

 

Figure S3: Light microscopy image of thin cut of embedded and Coomassie stained 

samples a) and b) demineralized nacre matrix with infiltrated gelatin without any 

digital modification c) reference experiment of embedded and microtomed gelatin 

stained with Coomassie blue. 
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TGA measurements 

 

Figure S4: TGA curves of chitin–gelatin–magnetite (10 wt % gelatin) composite after 

different reaction cycles. RC stands for the number of reaction cycles. 

 

Diffraction analysis 

 

Figure S5: a) TEM image of ultramicro-cut of embedded gelatin-chitin-magnetite 

composite with selected area electron diffraction (SAED) image. B) XRD pattern of 

the representative magnetic composite material.  
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Mechanical characterization 

The Hertz model is one of the fundamental theories to describe the elastic 

deformation of two bodies in contact [7]. It assumes homogeneous, isotropic and 

linear elastic bodies with negligible adhesion or friction during deformation. For 

normal loading and small deformations (10 % of film thickness or particle diameter) 

the applied force F scales with deformation d like: 

𝐹 =  
4

3
 𝐸 𝑑

3

2 √𝑅     (S3) 

Here, E is the relative Young’s modulus and R is the radius of a sphere (in our case 

the colloidal probe). The relative modulus is composed of the moduli Ei and Poisson’s 

ratio νi of the two bodies in contact: 

1

𝐸
=  

1−𝜈1²

𝐸1
+

1−𝜈2²

𝐸2
     (S4) 

From the above Equation 1 it follows that plotting the logarithm of force vs 

deformation the slope should equal 1.5 which can be taken as a simple check for the 

validity of the model. 

The examined pure gelatin samples could be fitted very well with this model (fit error 

less than 1%) and the slope of the log–log plots matches the 1.5 predicted by the 

Hertz model. 
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Figure S6: Exemplary force–deformation characteristic on pure gelatin (14 wt %) and 

corresponding Hertz fit. 

 

 

Figure S7: Logarithmic representation of the force–deformation curve from Figure S6 

with linear fit indicating a slope of 1.47, close to the predicted 1.5 from Hertzian 

theory. Inset: statistic evaluation of log–log slopes (19 curves), mean value = 1.49 ± 

0.08. 
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